Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract LSST Camera CCDs produced by the manufacturer e2v exhibit strong and novel residual charge images when exposed to bright sources. These manifest in images following bright exposures both in the same pixel areas as the bright source, and in the pixels trailing between the source and the serial register. Both of these pose systematic challenges to the Rubin Observatory Legacy Survey of Space and Time instrument signature removal. The latter trail region is especially impactful as it affects a much larger pixel area in a less well defined position. In our study of this effect at UC Davis, we imaged bright spots to characterize these residual charge effects. We find a strong dependence of the residual charge on the parallel clocking scheme, including the relative levels of the clocking voltages, and the timing of gate phase transition during the parallel transfer. Our study points to independent causes of residual charge in the bright spot region and trail region. We propose potential causes in both regions and suggest methodologies for minimizing residual charge. We consider the trade-offs of these methods including decreasing the camera's full well and dynamic range at the high end. The voltage scheme in the main camera was altered to address this effect accordingly.more » « lessFree, publicly-accessible full text available July 1, 2026
-
We outline the scientific motivation for reducing the systematics in the image sensors used in the LSST. Some examples are described, leading to lab investigations. The CCD250 (Teledyne-e2v) and STA3900 Imaging Technology Laboratory (ITL) charge-coupled devices (CCDs) used in Rubin Observatory’s LSSTCam are tested under realistic LSST f/1.2 optical beam in a lab setup. In the past, this facility has been used to characterize these CCDs, exploring the systematic errors due to charge transport. Now, this facility is being used to optimize the clocking scheme and voltages. The effect of different clocking schemes on the on-chip systematics such as non-linear crosstalk, noise, persistence, and photon transfer is explored. The goal is to converge on an optimal configuration for the LSSTCam CCDs, which minimizes resulting dark energy science systematics.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We examine the simple model put forth in a recent note by Loeb regarding the brightness of space debris in the size range of 1–10 cm and their impact on the Rubin Observatory Legacy Survey of Space and Time (LSST) transient object searches. Their main conclusion was that “image contamination by untracked space debris might pose a bigger challenge [than large commercial satellite constellations in Low-Earth orbit].” Following corrections and improvements to this model, we calculate the apparent brightness of tumbling low-Earth orbit (LEO) debris of various sizes, and we briefly discuss the likely impact and potential mitigations of glints from space debris in LSST. We find the majority of the difference in predicted signal-to-noise ratio (S/N), about a factor of 6, arises from the defocus of LEO objects due to the large Simonyi Survey Telescope primary mirror and finite range of the debris. The largest change from the Loeb estimates is that 1–10 cm debris in LEO pose no threat to LSST transient object alert generation because their S/N for detection will be much lower than estimated by Loeb due to defocus. We find that only tumbling LEO debris larger than 10 cm or with significantly greater reflectivity, which give 1 ms glints, might be detected with high confidence (S/N > 5). We estimate that only one in five LSST exposures low on the sky during twilight might be affected. More slowly tumbling objects of larger size can give flares in brightness that are easily detected; however, these will not be cataloged by the LSST Science Pipelines because of the resulting long streak.more » « less
-
Abstract Decades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. The spiking responses of neurons throughout the brain have been associated with the pupil, small fixational saccades, and vigor in eye movements, but it has been difficult to isolate how internal states affect the eyes, and vice versa. While recording from populations of neurons in the visual and prefrontal cortex (PFC), we recently identified a latent dimension of neural activity called “slow drift,” which appears to reflect a shift in a global brain state. Here, we asked if slow drift is correlated with the action of the eyes in distinct behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and PFC, while they performed a memory-guided saccade task. In both tasks, slow drift was associated with the size of the pupil and the microsaccade rate, two external indicators of the internal state of the animal. These results show that metrics related to the action of the eyes are associated with a dominant and task-independent mode of neural activity that can be accessed in the population activity of neurons across the cortex.more » « less
An official website of the United States government
